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Semiclassical non-trace-type formulas for matrix-element
fluctuations and weighted densities of states
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Densities of states weighted with the diagonal matrix elements of two operatorsÂ and B̂, i.e., r (A,B)(E)

5(n^nuÂun&^nuB̂un&d(E2En), cannot, in general, be written as a trace formula, and therefore no simple
extension of semiclassical trace formulas is known for this case. However, from the high resolution analysis of
quantum spectra in the semiclassical regime we find strong evidence that weighting thed functions in the

quantum mechanical density of states with the product of diagonal matrix elements,^nuÂun&^nuB̂un&, is
equivalent to weighting the periodic orbit contributions in the semiclassical periodic orbit sum with the product
of the periodic orbit means,̂A&p^B&p , of the classical observablesA and B. Results are presented for the
hydrogen atom in a magnetic field for both the chaotic and near-integrable regime, and for the circle billiard.
@S1063-651X~99!08008-3#
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I. INTRODUCTION

Semiclassical trace formulas for both chaotic@1,2# and
regular@3# systems relate quantum spectra and classical
riodic orbits. These formulas have proven to be useful in
analysis of level statistics@4# and long-range correlations@5#
in the quantum spectra, and it has even become possib
compute individual eigenenergies from these express
@6–10#. Gutzwiller’s trace formula@1,2# and the Berry-Tabor
formula @3# are semiclassical approximations to the dens
of states but do not provide information about experim
tally measurable observables, i.e., matrix elements of H
mitian operators. The trace formulas have been extende
the calculation of diagonal matrix elements of smooth ope
tors in Refs.@11,12#. The extended trace formulas relate t
diagonal matrix elements of operators to the periodic o
means of the corresponding classical observables.

However, these formulas cannot be applied directly
the semiclassical calculation ofproductsof diagonal matrix
elements where the weighted density of states cannot, in
eral, be written as a trace formula. Products of diagonal
trix elements are important in several interesting applicati
of semiclassical theories, e.g., for the semiclassical theor
matrix element fluctuations@13#, with the variance of an op
erator Â in an eigenstateun& given by varn A[^nuÂ2un&

2^nuÂun&2. A semiclassical periodic orbit formula for prod
ucts of diagonal matrix elements is also of crucial imp
tance for the semiclassical quantization technique develo
in Ref. @14#, where the classical information of a set of o
servables is used to significantly improve the converge
properties of periodic orbit quantization.

In this paper we investigatenon-trace-type formulas for
the density of states weighted with the diagonal matrix e
ments of two operatorsÂ and B̂, i.e., r (A,B)(E)

5(n^nuÂun&^nuB̂un&d(E2En). From the high resolution
analysis of quantum spectra in the semiclassical regime
PRE 601063-651X/99/60~2!/1630~9!/$15.00
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find strong evidence that weighting thed functions in the
quantum mechanical density of states with the product

diagonal matrix elements,^nuÂun&^nuB̂un&, is equivalent to
weighting the periodic orbit contributions in the semiclas
cal periodic orbit sum with the product of the periodic orb
means,̂ A&p^B&p , of the classical observablesA andB.

The outline of the paper is as follows. In Sec. II we fir
briefly review Gutzwiller’s trace formula for chaotic system
and the Berry-Tabor formula for integrable systems, and d
cuss the extension of both equations to the calculation
diagonal matrix elements. We then apply the theories to s
tems with scaling properties, and introduce the high reso
tion analysis~harmonic inversion! of quantum spectra as
powerful tool to numerically verify the validity of the sem
classical expressions. In Sec. III we present our results on
semiclassical non-trace-type formulas. Strong numerical
dence for the validity of the non-trace-type equations is p
vided by the harmonic inversion of spectra of two differe
systems, viz., the hydrogen atom in a magnetic field and
circle billiard. Section IV concludes with remarks on usef
and important applications, and an outlook on possible g
eralizations of the non-trace-type formulas.

II. SEMICLASSICAL TRACE FORMULAS

A. Matrix element extension of periodic orbit theory

The quantum mechanical density of states can be wri
as the trace of the Green function,r(E)5(nd(E2En)
52(1/p)Im tr ĜE

1 . Replacing the quantum mechanic

Green functionĜE
15(E2Ĥ1 i e)21 with its semiclassical

analog and calculating integrals and traces in station
phase approximation Gutzwiller derived the fundamen
equation ofperiodic orbit theory@1,2#, i.e., the density of
states expressed in terms of quantities of the periodic or
of the classical system. To obtain the density of sta
1630 © 1999 The American Physical Society
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weighted with the diagonal matrix elements of an operatoÂ
we start from the generalized trace formula

r (A)~E!52
1

p
Im tr~ĜE

1Â!

52
1

p
lim
e˜0

Im (
n

^nuÂun&
E2En1 i e

5(
n

^nuÂun&d~E2En!. ~1!

The right-hand side of Eq.~1! is the density of states

weighted with the diagonal matrix elements^nuÂun& of the
operatorÂ. The semiclassical approximation to Eq.~1! for a
system withN degrees of freedom reads@11,12#

r (A)~E!5r0
(A)~E!1

1

p\
Re(

p
Ap(

r 51

` Tp

Audet~M p
r 2I !u

3ei [Sp(E)/\2(p/2)mp] r , ~2!

where the Weyl term r0
(A)(E)5h2N*dqdpA(q,p)d„E

2H(q,p)… is a smooth function of the energy and the flu
tuating part is given by the periodic orbit sum, withTp the
time period,Sp the classical action,M p the monodromy ma-
trix, andmp the Maslov index of the primitive periodic orb
p. The integerr is the repetition number of the orbit. Th
weightsAp in the periodic orbit sum~2! are the means of the
observableA along the periodic orbitp, i.e.,

Ap5
1

Tp
E

0

Tp
A„qp~ t !,pp~ t !…dt. ~3!

The derivation of Eq.~2! requires smoothness of the obser
ableA over regions in phase space of sizehN @12#. A rigor-
ous mathematical proof of the semiclassical trace formula~2!
using a coherent states decomposition can be found in@15#.

In Refs. @11,12,15# formulas for the semiclassical calcu
lation of diagonal matrix elements are obtained for chao
systems with isolated periodic orbits. Forregular systems
the semiclassical trace formula for the density of states
been derived by Berry and Tabor@3#. For simplicity we re-
strict ourselves to systems with two degrees of freedom.
suming now that the Hamiltonian is classically integrab
one can express it in action-angle variables (I ,w) with
w1 ,w2P@0,2p# as H(I ). For a given torus,v i5]H/]I i ( i
51,2) are the corresponding angular frequencies. Peri
orbits are associated with tori such that the rotation num
a[v1 /v2 is rational, i.e.,a5M1 /M2 with M1 and M2
integers. The fluctuating part of the Berry-Tabor formu
reads

rfl~E!5
1

p\3/2
Re(

M

TM

M2
3/2ugE9 u1/2

ei [SM(E)/\2(p/2)hM2p/4],

~4!

with M5(M1 ,M2) specifying the periodic orbit, andTM ,
SM , andhM the time, action and Maslov index of the orb
respectively. The functiongE in Eq. ~4! is obtained by in-
c

as

s-
,

ic
er

verting the Hamiltonian, expressed in terms of the actio
(I 1 ,I 2) of the corresponding torus, with respect toI 2, viz.,
H@ I 1 ,I 25gE(I 1)#5E @16#. By analogy with Eq.~2! for cha-
otic systems the Berry-Tabor formula~4! can now be gener-
alized straightforwardly to the semiclassical calculation
diagonal matrix elements@17#, yielding

r (A)~E!5r0
(A)~E!1

1

p\3/2
Re(

M
AM

TM

M2
3/2ugE9 u1/2

3ei [SM(E)/\2(p/2)hM2p/4], ~5!

with

AM5
1

~2p!2E
0

2p

dw1E
0

2p

dw2A~ I 1 ,I 2 ,w1 ,w2! ~6!

the classical average of the observableA on the torus.

B. Scaling systems

In the following we will apply Eqs.~2! and~5! to systems
with scaling properties. In scaling systems the classical ph
space structure does not change for all values of an ap
priate scaling parameterw. The scaling parameter is usual
some power of an external field strength or, for Hamiltonia
with homogeneous potentials, the energy. Examples are
liard systems@17# or atoms in magnetic fields@18–20#. In
scaling systems the shape of periodic orbits does not dep
on the scaling parameterw and the classical actionSp scales
as

Sp5wsp . ~7!

The scaling parameter plays the role of an inverse effec
Planck constant, i.e.,w[\eff

21 . For scaling systems the
weighted densities of states, Eqs.~2! and ~5!, can be rewrit-
ten as a function of the scaling parameterw, i.e.,

r (A)~w!5r0
(A)~w!1

1

p\
Re(

p
Ap(

r 51

` sp

Audet~M p
r 2I !u

3ei [spw2(p/2)mp] r ~8!

for chaotic systems, and

r (A)~w!5r0
(A)~w!1

1

p\3/2
Re(

M
AM

sM

M2
3/2ugE9 u1/2

3ei [sMw2(p/2)hM2p/4] ~9!

for two-dimensional systems with regular dynamics. No
that the time periodsTp andTM in Eqs.~2! and~5! must be
replaced with the scaled actionssp andsM . Furthermore, the
time average of the classical observableA @Eq. ~3!# must be
replaced with the average with respect to the scaled acti

Ap5
1

sp
E

0

sp
A„qp~s!,pp~s!…ds. ~10!

If an observableA is chosen which is invariant under th
scaling of the system~or scales;wb with a constant expo-
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1632 PRE 60JÖRG MAIN AND GÜNTER WUNNER
nent b! the periodic orbit amplitudes and scaled actions
Eqs. ~8! and ~9! do not depend onw @despite a possible
power law scaling of the amplitudes withwb which can be
transferred to the left-hand side of Eqs.~8! and ~9!#. The
attractive feature of scaling systems is that the semiclass
weighted density of states~or more generally the density o
states multiplied bywb) is a superposition of sinusoida
functions of the scaling parameterw. The Fourier transforms
of wbr (A)(w) should therefore exhibit sharp peaks at t
positions of the scaled actions of the periodic orbits. Wh
analyzing quantum spectra, we will make use of the sca
advantages in the following.

C. Precision check of the semiclassical trace formulas

We now wish to apply the semiclassical trace formul
Eqs.~8! and~9!, to a physical system with chaotic and reg
lar dynamics, respectively, and to check numerically the
lidity of the semiclassical equations. The numerical chec
not motivated by doubts on the validity of these expressio
which have been mathematically proven, rather we wan
introduce a powerful numerical technique for the high pre
sion check of equations of this kind. We will demonstrate
accuracy of the method on the well established semiclass
trace formulas here and then apply the same techniqu
numerically verify our conjecture on semiclassical non-tra
type formulas in Sec. III.

The semiclassical trace formulas can be tested, in p
ciple, by the Fourier transform analysis of quantum spec
The Fourier transformed spectra should exhibit peaks at
periods ~scaled actions! of periodic orbits with amplitudes
given by the semiclassical expressions. However, the tr
formation of spectra with finite length yields limited resol
tion only, due to the uncertainty principle of the Fouri
transform, which implies a fundamental restriction to hi
precision checks of the semiclassical trace formulas.
therefore adopt the method of Ref.@21# where we introduced
harmonic inversionas a high resolution method for th
analysis of quantum spectra. We briefly review the ba
ideas of the harmonic inversion technique and refer
reader to Ref.@21# for more details.

According to Eqs.~8! and ~9! the semiclassical weighte
density of states can be written as the sum of a smooth b
groundr0

(A)(w) and oscillatory modulations induced by th
periodic orbits,

r (A)~w!5r0
(A)~w!1Re(

p
dp

(A)eispw. ~11!

The amplitudesdp
(A) and scaled actionssp of the periodic

orbits are obtained from classical calculations and are in g
eral complex quantities. The amplitudesdp

(A) contain the
phase information determined by the Maslov indices of
bits and the classical means of the observableA given by
Eqs. ~6! and ~10! for regular and chaotic systems, respe
tively. Instead of using the standard Fourier analysis to
tract the amplitudes and actions, we adjust a finite rang
the quantum spectrum by the semiclassical expression~11!
with unknown and in general complex parametersdp

(A) and
al

n
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sp . The problem of fitting a ‘‘signal’’r (A)(w) to the func-
tional form ~11! is known as harmonic inversion. As a nu
merical technique for the harmonic inversion of a signal, i
a quantum spectrum, we apply the method of filter diagon
ization @22,23# which allows extraction of the spectral qua
tities in any given interval of interest. Operationally, on
proceeds by setting up a small generalized eigenvalue p
lem. The actionssp in the chosen spectral domain and am
plitudesdp

(A) are obtained from the resulting eigenvalues a
eigenvectors. Thus, the recurrence spectrum is effectiv
discretized, the number of terms being the number of eig
values in the spectral domain. This method is a variatio
one~as opposed to the Fourier transform! and therefore prac-
tically has an infinite resolution once the amount of inform
tion contained in the signalr (A)(w) is greater than the tota
number of unknownsdp

(A) andsp .
As a physical system for the high precision analysis

quantum spectra and the comparison with the semiclass
trace formulas we choose the hydrogen atom in a magn
field @18–20#. This is a scaling system, withw5g21/3

5\eff
21 the scaling parameter andg5B/(2.353105 T) the

magnetic field strength in atomic units. Introducing sca
coordinatesg2/3r and momentag21/3p and choosing the pro
jection of the angular momentum on the magnetic field a
Lz50 one arrives at the scaled Hamiltonian

H̃5
1

2
p22

1

r
1

1

8
~x21y2!5Ẽ, ~12!

with Ẽ5Eg22/3 the scaled energy. The classical dynamics
near integrable at low energies,Ẽ,20.5, and undergoes
transition from regularity to chaos in the energy regi
20.5,Ẽ,20.13. At energies aboveẼ520.13 a Poincare´
surface of section analysis of the classical dynamics does
exhibit any regular structures larger than of microscopic s
@19#. We compare spectra at constant scaled energyẼ
520.1 with the results of the semiclassical trace formula~8!
for chaotic systems, and spectra in the near-integrable reg
at Ẽ520.5 with the extended Berry-Tabor formula~9!. We
choose two different operators. The first,

Â5
1

2rp2
, ~13!

has already served to study the distribution of transition m
trix elements in classically chaotic and mixed quantum s
tems@24,25#. The second operator is

B̂5rp2. ~14!

Eigenvalues of the scaling parameterw are obtained by solv-
ing Schrödinger’s equation~in semiparabolic coordinatesm
5Ar 1z andn5Ar 2z)

F2Ẽ~m21n2!2
1

4
m2n2~m21n2!14GC~m,n!

5w22~ p̂m
2 1 p̂n

2!C~m,n!, ~15!

with the radial operatorsp̂m
2 and p̂n

2 defined as
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p̂m
2 52

1

m

]

]m S m
]

]m D , p̂n
252

1

n

]

]n S n
]

]n D .

Equation ~15! can be written in matrix form by using a
appropriate basis set. The resulting generalized eigenv
problem is solved numerically. It has to be noted that
eigenvectors obtained,ucn&, are orthonormal with respect t
the scaled momentum operator, i.e.,

^cmu p̂m
2 1 p̂n

2ucn&5^mun&5dmn , ~16!

with modified eigenvectorsun& defined by un&[( p̂m
2

1 p̂n
2)1/2ucn&. The diagonal matrix elements of an operatorÂ

are therefore obtained as

Ann5^nuÂun&5^cnuÂ~ p̂m
2 1 p̂n

2!ucn&. ~17!

We are now prepared to compare the quantum spectra o
hydrogen atom in a magnetic field with the semiclassi
approximations in the chaotic and regular regime of the c
sical phase space.

1. Chaotic regime

We have calculated 3181 eigenvalueswn,80 of the scal-
ing parameter and the diagonal matrix elements of the
operatorsÂ51/(2rp2) andB̂5rp2 for the hydrogen atom in
a magnetic field at constant scaled energyẼ520.1. The
distributions of the matrix elements are presented in Fig

FIG. 1. Values of the diagonal matrix elements^nuÂun& ~in
dimensionless scaled atomic units! for the hydrogen atom in a mag

netic field at scaled energyẼ520.1 in the chaotic region of phas
space as functions of the dimensionless scaling parametew

5g21/3 (g;magnetic field strength!: ~a! operatorÂ51/(2rp2); ~b!

B̂5rp2.
ue
e

he
l

s-

o

.

The matrix elements are distributed randomly around
mean values without showing any regular pattern, as is ty
cal of systems with chaotic dynamics. The quantum m
chanical weighted density of states

r (A)~w!5(
n

^nuÂun&d~w2wn! ~18!

can now be analyzed with the harmonic inversion techniq
to obtain the scaled actionssp and the amplitudesdp

(A) @see
Eq. ~11!# of the classical periodic orbits. As can be seen fro
Eq. ~8! the periodic orbit amplitudes

dp
(A)5Apdp ~19!

are given as the product of the amplitudes,dp of Gutzwiller’s
original trace formula, and the classical periodic orbit mea
Ap in Eq. ~10!. For the graphical presentation of the results
is therefore convenient to divide the quantum amplitud
dp

(A) obtained by the harmonic inversion of the spectra by
amplitudes,dp of Gutzwiller’s trace formula. The periodic
orbit quantitiesAp obtained in this way from the quantum
spectra at scaled energyẼ520.1 are presented in Fig. 2 fo
three different operators, viz.,~a! the identity Î , and the op-
erators~b! Â51/(2rp2) and~c! B̂5rp2. The solid lines and
crosses in Fig. 2 mark the periodic orbit means obtained
the harmonic inversion of the quantum spectra. For comp
son the dashed lines and squares present the periodic

FIG. 2. Periodic orbit means of observables~a! the identity,~b!
A51/(2rp2), and~c! B5rp2 for the hydrogen atom in a magneti

field at scaled energyẼ520.1 as functions of the action~in dimen-
sionless scaled atomic units!. Solid lines and crosses: results of th
harmonic inversion of quantum spectra. Dashed lines and squ
periodic orbit means obtained by classical calculations. The ag
ment between the quantum and the classical calculations seem
be excellent, except for the nearly degenerate recurrences ats/2p
'1.1.
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means of the observable obtained classically via Eq.~10!.
For the identity the classical periodic orbit averages@squares
in Fig. 2~a!# are exactly equal to one. This is in excelle
agreement with the harmonic inversion analysis of the qu
tum mechanical density of states@crosses in Fig. 2~a!#, de-
spite the two weakly separated periodic orbit contributio
around s/2p'1.1. For the two operatorsÂ51/(2rp2) in
Fig. 2~b! andB̂5rp2 in Fig. 2~c! the agreement between th
periodic orbit means obtained by harmonic inversion of
quantum spectra and classically by Eq.~10! is of similar high
accuracy as for the identity in Fig. 2~a!. The results presente
in Fig. 2 demonstrate that harmonic inversion of quant
spectra@21# is indeed a powerful tool for the high precisio
check of semiclassical theories. Figure 2 provides an ex
lent numerical verification, by way of example of the hydr
gen atom in a magnetic field and the chosen set of opera
of the validity of the semiclassical trace formula~8! for cha-
otic systems.

2. Regular regime

In the same way as described above we have checked
validity of the extended Berry-Tabor formula~9! for inte-
grable systems. As a physical system we again choose
hydrogen atom in a magnetic field, but at low scaled ene
Ẽ520.5, where the classical phase space is regular.
have calculated 5640 eigenvalueswn,160 of the scaling
parameter and the diagonal matrix elements of the two
eratorsÂ51/(2rp2) and B̂5rp2. The weighted density o
states~18! for the identity, and the operatorsÂ51/(2rp2)
and B̂5rp2 have been analyzed in the same way as
plained above. The results obtained for the regular syste
scaled energyẼ520.5 resemble those of Fig. 2 for the ch
otic system. The difference is that the averages of the obs
ables for the resonant tori have been extracted from the q
tum spectra by application of the generalized Berry-Ta
formula ~9!. The quantum results perfectly agree with t
classical averages, which illustrates the validity of the g
eralized Berry-Tabor formula.

III. NON-TRACE-TYPE FORMULAS

The generalized semiclassical trace formulas~8! and ~9!
discussed in Sec. II allow the semiclassical calculation of
diagonal matrix elements of smooth operators. Howeve
would be desirable to know even more generalized exp
sions for the calculation ofproductsof matrix elements. As
mentioned in the Introduction, such formulas are importa
e.g., in the semiclassical theory of matrix element fluct
tions @13# or for the construction of cross-correlated period
orbit sums@14#. To study matrix element fluctuations of a
operatorÂ the density of states can be weighted with t

variances varn A[^nuÂ2un&2^nuÂun&2, i.e.,

r (var A)~E![(
n

^nuÂ2un&d~E2En!

2(
n

^nuÂun&2d~E2En!. ~20!
n-

s

e

l-

rs,

the
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y
e

p-

-
at

rv-
n-
r

-

e
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The first term in Eq.~20! can be written as a semiclassic
trace formula@Eqs. ~2! and ~5! for chaotic and regular sys
tems, respectively# with the observableA replaced with its
square,A2. However, because of the squares of the ma
elements, the second term in Eq.~20! in general cannot be
expressed in a straightforward fashion with the help of
Green operatorĜE

1 as a trace formula. The trivial exceptio

is when the operatorÂ commutes with the Hamiltonian
which means thatA is a constant of motion and thus it
variance vanishes. Thus the derivation of a semiclassical
proximation to the second term in Eq.~20! constitutes a non-
trivial problem.

One solution can be obtained by application of perio
orbit sum rules@4#. Using smooth approximations of thed
functions, e.g., Gaussians of widthe,

de~E!5
1

A2pe
e2E2/2e2

, ~21!

and the relation

de
2~E!5

1

2Ape
de/A2~E! ~22!

the second term in Eq.~20! can formally be written as the
square of the density of states weighted with the diago
matrix elements@4,13#, viz.,

(
n

^nuÂun&2de/A2~E2En!

52Ape(
n

^nuÂun&2de
2~E2En!

52ApeF(
n

^nuÂun&de~E2En!G2

. ~23!

The widthe in Eq. ~23! must be chosen sufficiently small s
that the smoothedd functions do not overlap. However,
should be noted that this condition cannot be fulfilled f
systems with degenerate states. On the right-hand side o
~23! the weighted density of states can now be written a
trace formula and replaced with its semiclassical approxim
tions ~2! and ~5! for chaotic and regular systems, respe
tively. Evaluation of the square of the periodic orbit sum
the right-hand side of Eq.~23! then finally yields a double
sum over all periodic orbits of the classical system. Althou
this result is formally correct, it is very inconvenient fo
practical applications for the following reasons. First, t
number of periodic orbits proliferates exponentially in ch
otic systems and the handling of the single periodic or
sum is already nontrivial. The practical evaluation of t
double sum would be even more cumbersome. Secondly
width e in Eq. ~23! is a free parameter. Although the resu
should not depend on the width ife is chosen sufficiently
small, the appropriate choice may render numerical calc
tions extremely expensive. Thirdly, and most important
the right-hand side of Eq.~23! does not coincide with the
‘‘simple’’ trace formulas in those special cases where
operatorÂ commutes with the Hamiltonian. Even for th
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simplest operator, the identityÂ5 Î , we end up with the
nontrivial periodic orbit sum rule of Ref.@4# instead of
Gutzwiller’s trace formula for the density of states. Esp
cially the third point indicates that the procedure describ
above might not be the simplest way to construct a semic
sical approximation to non-trace-type formulas such as
~20!. It is the main objective of this section to present
semiclassical approximation to non-trace-type weighted d
sities of states. Our semiclassical expressions agree with
well established ‘‘simple’’ semiclassical trace formulas wh
the weighted density of states can be written, for at least
of the operators commuting with the Hamiltonian, as a qu
tum mechanical trace formula.

Starting from a more general equation than Eq.~20! we
study the density of states

r (A,B)~E![(
n

^nuÂun&^nuB̂un&d~E2En!, ~24!

weighted with the product of the diagonal matrix elements
two smooth operatorsÂ andB̂. Equation~24! is the starting
point to construct a quantum mechanical cross-correla
function from a set of operators in Ref.@14#. The variance of
matrix elements@Eq. ~20!# is obtained by settingB̂5Â. The
weighted density of states~24! can only be written as a trac
formula, r (A,B)(E)5(21/p)Im tr $ÂĜE

1B̂% if either Â or B̂
commutes with the Hamiltonian. As discussed in Sec. II@see
Eq. ~19!# the semiclassical expressions for the weighted d
sities of states differ from Gutzwiller’s trace formula and t
Berry-Tabor formula in the following way. The periodic o
bit amplitudes are multiplied with the classical periodic or
~or torus! averages of the observableA. We now assume tha
this ansatz is still valid for the non-trace-type weighted d
sity of states~24!, i.e., its semiclassical analog has the sa
functional form as Gutzwiller’s periodic orbit sum but wit
periodic orbit amplitudesdp multiplied with the classical av-
eragesAp andBp of both observablesA andB,

dp
(A,B)5ApBpdp , ~25!

with Ap and Bp given by Eqs.~3! and ~6! for chaotic and
regular systems, respectively. As can easily be seen, this
satz has the property that the trace formulas~2! and ~5! are
recovered if one of the operators is chosen to be the iden
or one of the operators commutes with the Hamiltoni
However, the general validity of this ansatz is not at all o
vious, and will be checked numerically by the high reso
tion analysis of quantum spectra in the following. With t
ansatz~25! for the periodic orbit amplitudes the semiclas
cal analog to the non-trace-type formula~24! reads

r (A,B)~E!5r0
(A,B)~E!1

1

p\
Re(

p
ApBp(

r 51

` Tp

Audet~M p
r 2I !u

3ei [Sp(E)/\2(p/2)mp] r ~26!

for systems with underlying chaotic classical dynamics, a
-
d
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r (A,B)~E!5r0
(A,B)~E!1

1

p\3/2
Re(

M
AMBM

TM

M2
3/2ugE9 u1/2

3ei [SM(E)/\2(p/2)hM2p/4], ~27!

for integrable systems. Equations~26! and ~27! are the cen-
tral propositions of this paper, and generalize the semicla
cal trace formulas~2! and~5! to the non-trace-type weighte
density of states~24!. The nontrivial statement is tha
weighting the quantum mechanical density of states with
product of diagonal matrix elements of smooth operators
equivalent, on the semiclassical level, to weighting the p
odic orbit contributions in the periodic orbit sum with th
product of the averages of the corresponding classical
servables.

In analogy to the discussion of scaling properties in S
II, Eqs. ~26! and ~27! can be reformulated for scaling sys
tems, viz.,

r (A,B)~w!5r0
(A,B)~w!1

1

p\
Re(

p
ApBp(

r 51

` sp

Audet~M p
r 2I !u

3ei [spw2(p/2)mp] r ~28!

for chaotic systems, and

r (A,B)~w!5r0
(A,B)~w!1

1

p\3/2
Re(

M
AMBM

sM

M2
3/2ugE9 u1/2

3ei [sMw2(p/2)hM2p/4] ~29!

for two-dimensional systems with regular dynamics. F
scaling systems the classical periodic orbit averagesAp and
Bp in Eq. ~28! must be calculated with respect to the clas
cal action instead of time as defined in Eq.~10!.

In the following we will provide convincing numerica
evidence for the validity of the semiclassical non-trace-ty
formulas by the high precision analysis~harmonic inversion!
of quantum spectra of two different systems, viz., the hyd
gen atom in a magnetic field and the circle billiard. A rigo
ous mathematical proof of the expressions given abov
still lacking and constitutes a challenge for the further dev
opment of semiclassical theories.

A. Hydrogen atom in a magnetic field

To demonstrate the validity of the semiclassical no
trace-type formulas, Eqs.~28! and ~29!, we use the same
system and set of operators as in Sec. II, viz., the hydro
atom in a magnetic field at scaled energiesẼ520.1 andẼ
520.5 in the chaotic and near-integrable regime, resp
tively, and the operatorsÂ51/(2rp2) andB̂5rp2. With the
quantum mechanical eigenvalues and diagonal matrix
ments at hand, we construct the weighted densities of st
@see Eq. ~24!# ~a! r (A,A)(w), ~b! r (B,B)(w), and ~c!
r (A,B)(w). These spectra are analyzed with the harmonic
version technique as described in Sec. II. The analysis
vides the scaled actionsp of the periodic orbits and the pe
riodic orbit amplitudes dp

(A,A) (dp
(B,B) and dp

(A,B)). The
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amplitudes of the weighted densities of states are divided
the amplitudes of the unweighted densities of states to
tain, according to Eq.~25!, the products of the periodic orb
meansAp

2 (Bp
2 and ApBp). These values are presented

solid lines and crosses in Fig. 3 for the spectra in the cha
regime at scaled energyẼ520.1 and in Fig. 4 for the spec
tra at scaled energyẼ520.5 in the near-integrable regime
For comparison, the squares mark the products of the p
odic orbit means obtained from the classical calculations.
in Fig. 2 for the high precision check of the semiclassi
trace formula~8!, the agreement between the quantum a
classical calculations is found to be very good, whi
strongly supports the validity of the semiclassical non-tra
type expressions. Note that the somewhat larger deviat
between the crosses and squares for the nearly degen
recurrences atsp/2p'1.1 in Fig. 3 have also been observ
in Fig. 2 for the semiclassical trace formulas, i.e., the dev
tion does not indicate any failure of the non-trace-type f
mula ~28!.

B. Circle billiard

We now investigate the validity of the semiclassical no
trace-type formula~29! on a second system, viz., the int
grable circle billiard. This system also serves as a mo
example in Ref.@14# to construct a semiclassical cros
correlated periodic orbit sum for a given set of smooth o
servables, and to calculate semiclassical spectra and diag
matrix elements by harmonic inversion of the cros

FIG. 3. Products of periodic orbit means of the two observab
A51/(2rp2) andB5rp2 for the hydrogen atom in a magnetic fie

at scaled energyẼ520.1 as functions of the~dimensionless!
scaled action. Solid lines and crosses: results of the harmonic in
sion of the non-trace-type weighted densities of states. Dashed
and squares: results obtained by classical calculations. As in Fi
the agreement between the quantum and the classical calcula
seems to be excellent, except for the nearly degenerate recurr
at s/2p'1.1.
y
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correlation function. As is well known, Schro¨dinger’s equa-
tion for the circle billiard with radiusR can be separated in
polar coordinates (r ,w), and the wave functions can be e
pressed in terms of Bessel functions,

cnm~r ,w!5NnmJumu~knmr !eimw, ~30!

with theNnm being normalization constants,m the angular
momentum quantum number, andknm5A2MEnm/\ the
quantized wave numbers obtained as thenth zero of Bessel
functions,Jumu(knmR)50. In the following we choose radiu
R51. We calculated 31 208 eigenvaluesknm,500, and the
diagonal matrix elements of the operatorsr and r 2. The
quantum spectra of~a! the unweighted density of statesr(k)
~the wave numberk is the scaling parameter,w5k for bil-
liard systems@14#! and the density of states weighted wi
the matrix element expressions~b! ^cnmur 2ucnm&, ~c!
^cnmur ucnm&2, and ~d! the variance ^varr &nm
[^cnmur 2ucnm&2^cnmur ucnm&2 have been analyzed with
the harmonic inversion method. The amplitudes obtain
divided by the amplitudes of the Berry-Tabor formula, a
presented as solid lines and crosses in Fig. 5, and the c
sponding classical averages are drawn as squares for
parison. As can be seen, the agreement is perfect, not
for the identity and the periodic orbit means of the obse
able r 2 in Figs. 5~a! and 5~b!, verifying the Berry-Tabor
formula and its extension~9!, but also for the squares of th
periodic orbit means ofr and the variance of this observab
in Fig. 5~c! and 5~d!, where the agreement demonstrates
validity of the non-trace-type equation~29! for the circle
billiard with Â5B̂5r . The squares in Fig. 5~d! mark the
classical variances of the observabler on the various reso-
nant tori. Our conjecture therefore provides a basic form
for semiclassical matrix element fluctuations, since it direc

relates the quantum variances varn A[^nuÂ2un&2^nuÂun&2

s

r-
es
2,
ns

ces

FIG. 4. Same as Fig. 3 but in the near-integrable regime at sc

energyẼ520.5.
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of a smooth operatorÂ to the classical variances varp A
[^A2&p2^A&p

2 of the observableA taken along the periodic
orbits or resonant tori.

The perfect agreement between the quantum and clas
results for the circle billiard in Fig. 5 compared to the ve
good but not absolutely perfect results for the hydrogen a
in a magnetic field in Figs. 3 and 4 may be explained by
different number of quantum states used in the harmo
inversion analysis. For the circle billiard we have calcula
more than 30 000 states, which is by about a factor of
~5.5! times more quantum states than for the hydrogen a
in a magnetic field at scaled energyẼ520.1 (Ẽ520.5).

IV. CONCLUSION AND OUTLOOK

We have extended semiclassical trace formulas for
density of states of regular and chaotic systems, or the d
sity of states weighted with the diagonal matrix elements
smooth operators, to the more general class ofnon-trace-
type equations, where the density of states is weighted w
the diagonal matrix elements of two operatorsÂ andB̂, i.e.,

r (A,B)(E)5(n^nuÂun&^nuB̂un&d(E2En). By the high reso-
lution analysis~harmonic inversion! of the quantum spectra
of two different systems, viz., the hydrogen atom in a ma
netic field and the circle billiard, we have given numeric
evidence that weighting the quantum mechanical density

FIG. 5. Classical averages on rational tori of~a! the identity,~b!
^r 2&p , ~c! ^r &p

2 , and ~d! the variances varp r[^r 2&p2^r &p
2 for the

circle billiard with radiusR51 as functions of the action~in dimen-
sionless scaled atomic units!. Solid lines and crosses: results of th
harmonic inversion of quantum spectra. Dashed lines and squ
periodic orbit means obtained by classical calculations.
cal
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states with the product of the diagonal matrix eleme

^nuÂun&^nuB̂un& is equivalent, on the semiclassical level,
weighting the periodic orbit contributions in the periodic o
bit sum with the product of the averages of the correspo
ing classical observables,^A&p^B&p , where the means ar
taken along the periodic orbits or resonant tori for chao
and regular systems, respectively. However, a rigorous m
ematical derivation of semiclassical non-trace-type formu
appears nontrivial, and would be a challenging task for
further development of semiclassical theories.

There are several useful and important applications
semiclassical non-trace-type formulas. For example, it
ables the semiclassical approach to matrix element fluc

tions. The variances varn A[^nuÂ2un&2^nuÂun&2 of the di-
agonal matrix elements of a smooth operatorÂ are expressed
in terms of the variances varp A[^A2&p2^A&p

2 of the classi-
cal observableA taken along the periodic orbits or resona
tori. Non-trace-type formulas also provide the semiclass
approximation to cross-correlated weighted density of sta
raa8(E)5(n^nuÂaun&^nuÂa8un&d(E2En) with a set of
smooth operatorsÂa , a51, . . . ,D. The additional classica
information obtained from the set of classical observab
can be used to significantly improve the convergence pr
erties of semiclassical quantization methods@14#.

In this paper we have investigated non-trace-type exp
sions for products of two diagonal matrix elements. The
products have been chosen because of the important app
tions to semiclassical matrix element fluctuations, i.e.,
calculation of variances of matrix elements and to the se
classical quantization method in Ref.@14#. However, our
conjecture is not restricted to products of two matrix e
ments. For example, it appears straightforward to genera
Eqs.~26! and ~27! to products of more than two matrix ele
ments and classical periodic orbit means. The most gen
case of non-trace-type equations would be
analysis of functions f (Ann ,Bnn ,Cnn , . . . ) of one or
more diagonal matrix elements, i.e., r ( f )(E)
5(nf (Ann ,Bnn ,Cnn , . . . )d(E2En), which should be ob-
tained semiclassically by multiplying the periodic orbit am
plitudes of Gutzwiller’s trace formula or the Berry-Tabo
formula with the functionf (^A&p ,^B&p ,^C&p , . . . ) of the
periodic orbit means of the corresponding classical obse
ables. Certainly the operators and the functionf must be
smooth. Clearly, further investigations will be necessary
verify that conjecture and to specify the smoothness con
tions on operators and functions.

In conclusion, the analysis of non-trace-type equatio
will provide a valuable instrument for extending the relati
between quantum mechanical matrix elements on the
side and the periodic orbit means of classical observable
the other.
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