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Densities of states weighted with the diagonal matrix elements of two opevatarsi B, i.e., p*®)(E)

=En(n|A|n)<n|é|n>5(E—En), cannot, in general, be written as a trace formula, and therefore no simple
extension of semiclassical trace formulas is known for this case. However, from the high resolution analysis of
guantum spectra in the semiclassical regime we find strong evidence that weightiadguhetions in the

quantum mechanical density of states with the product of diagonal matrix eIenQat&n)(n“ABm), is
equivalent to weighting the periodic orbit contributions in the semiclassical periodic orbit sum with the product
of the periodic orbit meangA)y(B),, of the classical observablgsand B. Results are presented for the
hydrogen atom in a magnetic field for both the chaotic and near-integrable regime, and for the circle billiard.
[S1063-651X99)08008-3

PACS numbdis): 05.45~a, 03.65.Sq

[. INTRODUCTION find strong evidence that weighting th&functions in the
quantum mechanical density of states with the product of

Semiclassical trace formulas for both chadtic2] apd diagonal matrix element$n|A|n><n|éln>, is equivalent to
regular[3] systems relate quantum spectra and classical P&yeighting the periodic orbit contributions in the semiclassi-
riodic orbits. These formulas have proven to be useful in thg.g periodic orbit sum with the product of the periodic orbit
analysis of level statistidgt] and long-range correlations] means(A),(B),, of the classical observablésandB.
in the quantum spectra, and it has even become possible t0 The gutline of the paper is as follows. In Sec. Il we first

compute individual eigenenergies from these expressiongyiefiy review Gutzwiller's trace formula for chaotic systems

[6-10]. Gutzwiller's trace formuld1,2] and the Berry-Tabor  anq the Berry-Tabor formula for integrable systems, and dis-
formula[3] are semiclassical approximations to the densityess the extension of both equations to the calculation of
of states but do not provide information about eXperimenyiaqonal matrix elements. We then apply the theories to sys-

ta!![y measur?ble ggse{vable]cs, l.e.l, mﬁtnx (Elementst Ofd H(?rt'ems with scaling properties, and introduce the high resolu-
the caloulation of diagonal matix elements of smooth operal 2" analysis(harmonic inversionof quantum spectra as a

. powerful tool to numerically verify the validity of the semi-
tors in Refs[11,12. The extended trace formulas relate theP y fy y

diaconal matrix elements of operators to the periodic Orbiclassical expressions. In Sec. lll we present our results on the
9 ! pere P Semiclassical non-trace-type formulas. Strong numerical evi-
means of the corresponding classical observables.

H th : | b lied directly f dence for the validity of the non-trace-type equations is pro-
owever, these formulas cannot be applied directly 1or, ;4 4 by the harmonic inversion of spectra of two different
the semiclassical calculation pfoductsof diagonal matrix

I ts where th iqhted densitv of stat i systems, viz., the hydrogen atom in a magnetic field and the
elements where the weighted density of states cannot, In g€l e pjjliard. Section IV concludes with remarks on useful

ffa" lbe wnttten asa tratcetf(_)rmula. Plr.o?uctst_of dlagcl).nalt_m and important applications, and an outlook on possible gen-
rix elements are important in several interesting applications, .- 2tions of the non-trace-type formulas,

of semiclassical theories, e.g., for the semiclassical theory o
matrix element fluctuationfsl 3], with the variance of an op-

erator A in an eigenstatdn) given by vap A=(n|A?|n)

—(n|A|n)2. A semiclassical periodic orbit formula for prod-
ucts of diagonal matrix elements is also of crucial impor-
tance for the semiclassical quantization technique developed The quantum mechanical density of states can be written
in Ref. [14], where the classical information of a set of ob- as the trace of the Green functiop(E)==,8(E—E,)

servables is used to significantly improve the convergence- — (1/7)imtrG/ . Replacing the quantum mechanical

properties of periodic orbit quantization. Green functionG; =(E—H+ie) ! with its semiclassical
In this paper we investigateon-tracetype formulas for analog and calculating integrals and traces in stationar
the density of states weighted with the diagonal matrix ele- 9 aicutating 9 . y
- N (AB)(E phasg approximation (_Butzwnler derlyed the fund_amental

ments of two operatorsA and B, ie, p"™™(E)  equation ofperiodic orbit theory[1,2], i.e., the density of
=3,(n|Aln){n|B|n)S(E—E,). From the high resolution states expressed in terms of quantities of the periodic orbits

analysis of quantum spectra in the semiclassical regime wef the classical system. To obtain the density of states

Il. SEMICLASSICAL TRACE FORMULAS

A. Matrix element extension of periodic orbit theory
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We|ghted with the diagona| matrix elements of an OperAtor Verting the Ham”tonian, eXpressed in terms of the actions
we start from the generalized trace formula (I1,12) of the corresponding torus, with respectitg viz.,
H[1,,1,=ge(l1)]=E [16]. By analogy with Eq(2) for cha-

otic systems the Berry-Tabor formuld) can now be gener-
alized straightforwardly to the semiclassical calculation of
diagonal matrix elementsl7], yielding

1 A
pA(E)=— ;Imtr(GEA)

— lim ImE <n|A|n) 1 T
T TR PONEI =B+ iRe g A g
:; (n|AIn)8(E—E,,). (1) @l [Su(E/h —~(wl2)p ~ l4] )
. . . . with
The right-hand side of Eq(1) is the density of states
weighted with the diagonal matrix elemeris|A|n) of the A 1 J'Zvrd 27rd N ©
operatorA. The semiclassical approximation to Ed) for a MT2m2), TP, T¢2 (I1:12,01,%2)

system withN degrees of freedom reai$1,12]
the classical average of the observahlen the torus.

o0

1 T
A _ (A p
pM(E)=p{M(E)+ %Re%‘, Ap;::l m B. Scaling systems
In the following we will apply Egs(2) and(5) to systems
with scaling properties. In scaling systems the classical phase
_ space structure does not change for all values of an appro-
where the Weyl term pgA,)(E): h~"[dqdpA(q,p) S(E priate scaling parametev. The scaling parameter is usually
—H(q,p)) is a smooth function of the energy and the fluc- 5o me power of an external field strength or, for Hamiltonians
tuating part is given by the periodic orbit sum, wity the  \\ith homogeneous potentials, the energy. Examples are bil-
time period,S, the classical actiorM, the monodromy ma-  jiarg systemg[17] or atoms in magnetic fieldg18—2d. In
trix, and ., the Maslov index of the primitive periodic orbit  scajing systems the shape of periodic orbits does not depend

p. The integerr is the repetition number of the orbit. The ,, the scaling parameter and the classical actio8, scales
weightsA, in the periodic orbit suni2) are the means of the ¢

observableA along the periodic orbip, i.e.,

x el [Sp(E)/ A= (wl2) gl )

. Sp=WwWs;. (7
P
Ap:?pfo A(Gp(1), Pp(t))dt. (3) The scaling parameter plays the role of an inverse effective
Planck constant, i.e.w=7#_ . For scaling systems the

The derivation of Eq(2) requires smoothness of the observ- weighted densities of states, Eq8) and (5), can be rewrit-
able A over regions in phase space of st?&[12]. A rigor-  ten as a function of the scaling parameteri.e.,
ous mathematical proof of the semiclassical trace forrfjla
using a coherent states decomposition can be foufdi5h A 1 Sp

In Refs.[11,12,15 formulas for the semiclassical calcu- P (W)= p{V(w)+ —ﬁReE A, —
lation of diagonal matrix elements are obtained for chaotic m P =t V|de(Mp_|)|
systems with isolated periodic orbits. Forgular systems x @ilspW—(w2)pplr @)
the semiclassical trace formula for the density of states has
been derived by Berry and Tabf3]. For simplicity we re-  for chaotic systems, and
strict ourselves to systems with two degrees of freedom. As-

[

suming now that the Hamiltonian is classically integrable, 1 Su

one can express it in action-angle variabldse] with PP (w)=p(w)+ 3,2Rez AV =3 1
¢1,¢,€[0,2] asH(l). For a given torusw;=dH/4l; (i mh M M9kl

=1,2) are the corresponding angular frequencies. Periodic x @l [smw— (7/2) 7y — /4] (9)

orbits are associated with tori such that the rotation number
a=w;/w, is rational, i.e.,a=M;/M, with M; and M,  for two-dimensional systems with regular dynamics. Note
integers. The fluctuating part of the Berry-Tabor formulathat the time period3,, and Ty, in Egs.(2) and(5) must be
reads replaced with the scaled actioggandsy, . Furthermore, the
time average of the classical observallgEqg. (3)] must be
pa(E) = 23/2 ReS Tw (S (E)/A— (wl2) = /4] replaced with the average with respect to the scaled action,
T

Vo M3ge| 2

1 (s
(4) Apzs—p f . A(Gp(S),py(s))ds. (10)

with M=(M,M,) specifying the periodic orbit, andl, ,
Su ., andny, the time, action and Maslov index of the orbit, If an observableA is chosen which is invariant under the
respectively. The functioe in Eq. (4) is obtained by in- scaling of the systerfor scales~w? with a constant expo-
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nent B) the periodic orbit amplitudes and scaled actions ins,. The problem of fitting a “signal”’p™(w) to the func-
Egs. (8) and (9) do not depend omw [despite a possible tional form (11) is known as harmonic inversion. As a nu-
power law scaling of the amplitudes witk® which can be merical technique for the harmonic inversion of a signal, i.e.,
transferred to the left-hand side of Eq8) and (9)]. The  aquantum spectrum, we apply the method of filter diagonal-
attractive feature of scaling systems is that the semiclassic#ation[22,23 which allows extraction of the spectral quan-
weighted density of statg®r more generally the density of fities in any given interval of interest. Operationally, one
states multiplied byw?) is a superposition of sinusoidal proceeds by _settlng up a small generalized elge_nvalue prob-
functions of the scaling parameter The Fourier transforms 1€m- The 2Ct|0“$p in the chosen spectral domain and am-
of whp®(w) should therefore exhibit sharp peaks at thep!ltudesdg ) are obtained from the resulting elgepvalues gnd
positions of the scaled actions of the periodic orbits. Wherfigenvectors. Thus, the recurrence spectrum is effectively

analyzing quantum spectra, we will make use of the Sca|in€iscreti;ed, the number of terms being the number of eigen-
advantages in the following alues in the spectral domain. This method is a variational

one(as opposed to the Fourier transforamd therefore prac-
tically has an infinite resolution once the amount of informa-
tion contained in the signgl®(w) is greater than the total

_ _ _ number of unknowns"” ands, .

We now wish to apply the semiclassical trace formulas, as 5 physical system for the high precision analysis of
Egs.(8) and(9), to a physical system with chaotic and regu- qyantum spectra and the comparison with the semiclassical
lar dynamics, respectively, and to check numerically the Vagace formulas we choose the hydrogen atom in a magnetic
lidity of the semiclassical equations. The numerical check ig;g|q [18-20. This is a scaling system, withv=1" 3

not motivated by doubts on the validity of these expressions,__h—ﬁl the scaling parameter angl=B/(2.35< 1C°T) the
which have been mathematically proven, rather we want t(?’na‘g;netic field strength in atomic units. Introducing scaled
introduce a powerful numerical technique for the high preci
sion check of equations of this kind. We will demonstrate th
accuracy of the method on the well established semiclassic
trace formulas here and then apply the same technique to
numerically verify our conjecture on semiclassical non-trace- 1 1 1 _
type formulas in Sec. Ill. = Epz— -+ g(x2+y2)= E, (12)
The semiclassical trace formulas can be tested, in prin-
ciple, by the Fourier transform analysis of quantum spectra, ..~ _ . o
Tr?e Foﬁrier transformed spectra sh)i)uld ethibit peaksp at th\é\”th FT: Ey~**the scaled enfar~gy. The classical dynamics is
periods (scaled actionsof periodic orbits with amplitudes Near integrable at low energieS<—0.5, and undergoes a
given by the semiclassical expressions. However, the trandfansition from regularity to chaos in the energy region
formation of spectra with finite length yields limited resolu- —0.5<E<—0.13. At energies above=—0.13 a Poincare
tion only, due to the uncertainty principle of the Fourier surface of section analysis of the classical dynamics does not

transform, which implies a fundamental restriction to highexhibit any regular structures larger than of microscopic size
precision checks of the semiclassical trace formulas. W19]. We compare spectra at constant scaled eneﬁgy
therefore adopt the method of Rg21] where we introduced = — 0.1 with the results of the semiclassical trace form8la
harmonic inversionas a high resolution method for the for chaotic systems, and spectra in the near-integrable regime
analysis of quantum spectra. We briefly review the basic g _ _ 5 with the extended Berry-Tabor formuia). We
ideas of the harmonic inversion technique and refer the.,ose two different operators. The first

reader to Ref[21] for more details. ’

C. Precision check of the semiclassical trace formulas

“coordinatesy?®r and momenta/~ ¥3p and choosing the pro-
t?ction of the angular momentum on the magnetic field axis
=0 one arrives at the scaled Hamiltonian

Il

According to Eqs(8) and (9) the semiclassical weighted A 1
density of states can be written as the sum of a smooth back- A=—, (13
groundpgA)(w) and oscillatory modulations induced by the 2rp

periodic orbits, has already served to study the distribution of transition ma-

A o trix elements in classically chaotic and mixed quantum sys-
pA(w)=p§Y(w)+ReX, dPe'sv. (1) tems[24,25. The second operator is
P

B=rp2 (14)

The amplitudesd{” and scaled actions, of the periodic  Eigenvalues of the scaling parameteare obtained by solv-
orbits are obtained from classical calculations and are in gering Schralinger’s equatior(in semiparabolic coordinatgs
eral complex quantities. The amplitude$” contain the = r+z andv=\r—2z)

phase information determined by the Maslov indices of or-
bits and the classical means of the observablgiven by
Egs. (6) and (10) for regular and chaotic systems, respec-
tively. Instead of using the standard Fourier analysis to ex- o
tract the amplitudes and actions, we adjust a finite range of =w (pi+po)V(p,v), (15)
the quantum spectrum by the semiclassical expresditn

with unknown and in general complex parametéf® and  with the radial operatorp?, andp? defined as

- 1
2B(pPHv?) = g pPvA(uP+ )+ 4|V ()
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FIG. 1. Values of the diagonal matrix elemers|/A|n) (in

dimensionless scaled atomic upifsr the hydrogen atom in a mag- FIG. 2. Periodic orbit means of observablesthe identity,(b)

netic field at scaled enerdy=— 0.1 in the chaotic region of phase A=1/(2rp?), and(c) B=rp? for the hydrogen atom in a magnetic

space as functions of the dimensionless scaling parameter field at scaled energ=—0.1 as functions of the actidin dimen-

v~ Y3 (y~magnetic field strengih(a) operatorA= 1/(2rp?); (b) sionless scaled atomic unitsSolid lines and crosses: results of the

=rp. harmonic inversion of quantum spectra. Dashed lines and squares:
periodic orbit means obtained by classical calculations. The agree-
ment between the quantum and the classical calculations seems to

~2 10 ( J ) ~2 14 ( J ) be excellent, except for the nearly degenerate recurrence@at

|

P o\ Pl P Ma ~11,

Equation (15) can be written in matrix form by using an The matrix elements are distributed randomly around the

appropriate basis set. The resulting generalized eigenvalJ@€an values without showing any regular pattern, as is typi-
problem is solved numerically. It has to be noted that thet@l Of systems with chaotic dynamics. The quantum me-
eigenvectors obtainediy,), are orthonormal with respect to chanical weighted density of states

the scaled momentum operator, i.e.,

pPw)=3 (nlAn)s(w-w,) (18)
(Wl P+ DY ) = (mIn) = S, (16)
can now be analyzed with the harmonic inversion technique
with modified eigenvectors|n) defined by [ny=(p2 L0 obtain the scaled actiorss and the amplituded Y [see

A . . 4 Eqg.(11)] of the classical periodic orbits. As can be seen from
+p?) Y3 y,). The diagonal matrix elements of an operator Eg ((8))t]he periodic orbitpamplitudes
are therefore obtained as '
A) _
. o A5 =Agdp (19
Ann={(n|A|n)= A(ps+ . 1 ) . .
= (PIAIM) =l ACPL+P3) [ 1) (17 are given as the product of the amplitudeés of Gutzwiller's
original trace formula, and the classical periodic orbit means
We are now prepared to compare the quantum spectra of the in £q. (10). For the graphical presentation of the results it
hydrogen atom in a magnetic field with the semiclassicals  therefore convenient to divide the quantum amplitudes
approximations in the chaotic and regular regime of the clasg(® gptained by the harmonic inversion of the spectra by the
sical phase space. amplitudes,d,, of Gutzwiller's trace formula. The periodic
orbit quantitiesA, obtained in this way from the quantum
spectra at scaled ener§y= — 0.1 are presented in Fig. 2 for
~ We have calculated 3181 eigenvalwes<80 of the scal-  three different operators, viz@) the identityl, and the op-
ing parameter and the diagonal matrix elements of the tw%rators(b) A=1/(2rp?) and(c) B=rp2. The solid lines and

operatorsA = 1/(2r p?) andB=rp? for the hydrogen atom in - crosses in Fig. 2 mark the periodic orbit means obtained by
a magnetic field at constant scaled enekgy —0.1. The the harmonic inversion of the quantum spectra. For compari-
distributions of the matrix elements are presented in Fig. 1son the dashed lines and squares present the periodic orbit

1. Chaotic regime
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means of the observable obtained classically via @&g). The first term in Eq(20) can be written as a semiclassical
For the identity the classical periodic orbit averafgguares trace formula[Egs.(2) and (5) for chaotic and regular sys-
in Fig. 2(@)] are exactly equal to one. This is in excellent tems, respectivelywith the observableA replaced with its
agreement with the harmonic inversion analysis of the quansquare, A2. However, because of the squares of the matrix
tum mechanical density of statesrosses in Fig. @], de- elements, the second term in EQQ) in general cannot be
spite the two weakly separated periodic orbit contributionsexpressed in a straightforward fashion with the help of the

arounds/2w~1.1. For the two operatoré=1/(2rp?) in Green operatoég as a trace formula. The trivial exception

Fig. 2(b) andB=rp? in Fig. 2(c) the agreement between the is when the operatoA commutes with the Hamiltonian,
periodic orbit means obtained by harmonic inversion of thewhich means tha#A is a constant of motion and thus its
quantum spectra and classically by EtQ) is of similar high  variance vanishes. Thus the derivation of a semiclassical ap-
accuracy as for the identity in Fig(&@. The results presented proximation to the second term in E@O) constitutes a non-

in Fig. 2 demonstrate that harmonic inversion of quantuntrivial problem.

spectrg[21] is indeed a powerful tool for the high precision ~ One solution can be obtained by application of periodic
check of semiclassical theories. Figure 2 provides an excebrbit sum ruleg4]. Using smooth approximations of th&

lent numerical verification, by way of example of the hydro- functions, e.g., Gaussians of widéh

gen atom in a magnetic field and the chosen set of operators,

of the validity of the semiclassical trace formy for cha- 1 ope
otic systems. 0(E)= \/ﬂee : (21
2. Regular regime and the relation
In the same way as described above we have checked the
validity of the extended Berry-Tabor formul®) for inte- 21 22
grable systems. As a physical system we again choose the O(E)= 2 me S 2(E) (22)

hydrogen atom in a magnetic field, but at low scaled energy

E=-0.5, where the classical phase space is regular. Wthe second term in Eq20) can formally be written as the
have calculated 5640 eigenvalues<<160 of the scaling square of the density of states weighted with the diagonal
parameter and the diagonal matrix elements of the two opmatrix element$4,13], viz.,

eratorsA=1/(2rp?) and B=rp? The weighted density of

states(18) for the identity, and the operatols= 1/(2rp?) > (n|AIn)25,, (E—E,)

and B=rp? have been analyzed in the same way as ex- "

plained above. The results obtained for the regular system at A

scaled energ¥ = — 0.5 resemble those of Fig. 2 for the cha- :2\/;52 (n|A[n)? 6 (E~Ep)

otic system. The difference is that the averages of the observ-

ables for the resonant tori have been extracted from the quan- A 2

tum spectra by application of the generalized Berry-Tabor =2\me % (n[A[n)S(E~Ep)| - (23
formula (9). The quantum results perfectly agree with the

classical averages, which illustrates the validity of the genTne width e in Eq. (23) must be chosen sufficiently small so

eralized Berry-Tabor formula. that the smoothed functions do not overlap. However, it
should be noted that this condition cannot be fulfilled for
IIl. NON-TRACE-TYPE FORMULAS systems with degenerate states. On the right-hand side of Eq.

(23) the weighted density of states can now be written as a

The generalized semiclassical trace formu@sand (9) trace formula and replaced with its semiclassical approxima-
discussed in Sec. Il allow the semiclassical calculation of theions (2) and (5) for chaotic and regular systems, respec-
diagonal matrix elements of smooth operators. However, itively. Evaluation of the square of the periodic orbit sum on
would be desirable to know even more generalized expreghe right-hand side of Eq23) then finally yields a double
sions for the calculation gbroductsof matrix elements. As sum over all periodic orbits of the classical system. Although
mentioned in the Introduction, such formulas are importantthis result is formally correct, it is very inconvenient for
e.g., in the semiclassical theory of matrix element fluctuapractical applications for the following reasons. First, the
tions[13] or for the construction of cross-correlated periodicnumber of periodic orbits proliferates exponentially in cha-
orbit sums[14]. To study matrix element fluctuations of an otic systems and the handling of the single periodic orbit
operatorA the density of states can be weighted with thesum is already nontrivial. The practical evaluation of the
double sum would be even more cumbersome. Secondly, the
width € in Eq. (23) is a free parameter. Although the results
should not depend on the width &is chosen sufficiently
small, the appropriate choice may render numerical calcula-
tions extremely expensive. Thirdly, and most importantly,
the right-hand side of Eq23) does not coincide with the
“simple” trace formulas in those special cases where the

operatorA commutes with the Hamiltonian. Even for the

variances vafA=(n|A2|n)—(n|A|n)2, i.e.,
p " N(E)=2 (n|A%n) S(E-Ey)

~ > (nAINY?S(E-Ey. (20
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simplest operator, the identith=1, we end up with the 1 T
nontrivial periodic orbit sum rule of Refl4] instead of pPBIE)=pP(E)+——-ReD, AuBu—35—15
Gutzwiller's trace formula for the density of states. Espe- wh M M2"19¢l
cially the third point indicates that the procedure described X el [Su(B)/h—(ml2)ny—ml4] 27

above might not be the simplest way to construct a semiclas-

sical approximation to non-trace-type formulas such as quor integrable systems. Equatiof@6) and (27) are the cen-

(20)'. It is _the main pbjegtwe of this section to present ay,, propositions of this paper, and generalize the semiclassi-
semiclassical approximation to non-trace-type weighted denx_, oo formulag2) and (5) to the non-trace-type weighted

o : . . . a
sities of states. Our semiclassical expressions agree with ”?:Fensity of states(24). The nontrivial statement is that

well established “simple” semiclassical trace formulas Whenweighting the quantum mechanical density of states with the

the weighted density of states can be writ_ten,_for at least Onﬁroduct of diagonal matrix elements of smooth operators is
of the operators commuting with the Hamiltonian, as a quan'equivalent, on the semiclassical level, to weighting the peri-
tum mephamcal trace formula. . odic orbit contributions in the periodic orbit sum with the
Starting fro”.‘ a more general equation than E2() we product of the averages of the corresponding classical ob-
study the density of states servables.
In analogy to the discussion of scaling properties in Sec.
II, Egs. (26) and (27) can be reformulated for scaling sys-

pAOE)=Z (nAINYNBIMSE-En, 29 tms, viz.,

o)

weighted with the proAduct of the diagonal matrix elements Ofp(A'B)(W):pgA'B)(w) n iReE ABS Sp
two smooth operator8 andB. Equation(24) is the starting h e ~/|de'(M{)—|)|
point to construct a quantum mechanical cross-correlation

function from a set of operators in R¢L4]. The variance of X gllsp= (T Amplt (28)

matrix element$Eq. (20)] is obtained by setting=A. The _

weighted density of statg@4) can only be written as a trace [OF chaotic systems, and

formula, p"B)(E) = (— 1/7)Im tr {AG. B} if either A or B .

commutes with the Hamiltonian. As discussed in Sefsék AB _ (AB Sm

Eqg. (19)] the semiclassical expressions for the weighted den- PP (w) _pg (w)+ h32 Re% AnvBw M3’2|g”|1/2

sities of states differ from Gutzwiller's trace formula and the _ 2 I9F
Berry-Tabor formula in the following way. The periodic or- x gltsmw= (ml2)my = ml4] (29)

bit amplitudes are multiplied with the classical periodic orbit

(or torug averages of the observalbe We now assume that for two-dimensional systems with regular dynamics. For
this ansatz is still valid for the non-trace-type weighted denscaling systems the classical periodic orbit averagesand

sity of stateg24), i.e., its semiclassical analog has the sameB,, in Eq. (28) must be calculated with respect to the classi-
functional form as Gutzwiller’s periodic orbit sum but with ca| action instead of time as defined in EfO).

periodic orbit amplitudesl, multiplied with the classical av- In the following we will provide convincing numerical
eragesA, andB,, of both observables andB, evidence for the validity of the semiclassical non-trace-type
formulas by the high precision analyglsarmonic inversion
AB) _ of quantum spectra of two different systems, viz., the hydro-
dAP=ABd,, (25 ©°'d P g A

gen atom in a magnetic field and the circle billiard. A rigor-
ous mathematical proof of the expressions given above is
with A, and B, given by Egs.(3) and (6) for chaotic and  still lacking and constitutes a challenge for the further devel-
regular systems, respectively. As can easily be seen, this agpment of semiclassical theories.
satz has the property that the trace formu@sand (5) are
recovered if one of the operators is chosen to be the identity
or one of the operators commutes with the Hamiltonian.
However, the general validity of this ansatz is not at all ob- To demonstrate the validity of the semiclassical non-
vious, and will be checked numerically by the high resolu-trace-type formulas, Eq€28) and (29), we use the same
tion analysis of quantum spectra in the following. With the system and set of operators as in Sec. Il, viz., the hydrogen
ansatz(25) for the periodic orbit amplitudes the semiclassi- gtom in a magnetic field at scaled energfias —0.1 andE
cal analog to the non-trace-type formud) reads =-0.5 in the chaotic and near-integrable regime, respec-
tively, and the operator&= 1/(2rp?) andB=rp?. With the
1 T quantum mechanical eigenvalues and diagonal matrix ele-
pAB(E)=p{B(E)+ —Re>, AB, > ——L2  ments at hand, we construct the weighted densities of states
mh T =1 y|deitMy—1)|  [see Eq.(24] (@ p»M(w), (b) p®B(w), and (c)
p*B)(w). These spectra are analyzed with the harmonic in-
version technique as described in Sec. Il. The analysis pro-
vides the scaled actios), of the periodic orbits and the pe-
for systems with underlying chaotic classical dynamics, andiodic orbit amplitudes d{*® (d®® and d*®). The

A. Hydrogen atom in a magnetic field

0

@l [Sp(E)hi— (m2)up]t (26)
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FIG. 3. Products of periodic orbit means of the two observabled-IG. 4. Same as Fig. 3 but in the near-integrable regime at scaled
A=1/(2rp?) andB=rp? for the hydrogen atom in a magnetic field energyE=—0.5.
at scaled energye=—0.1 as functions of thedimensionless
scaled action. Solid lines and crosses: results of the harmonic invetorrelation function. As is well known, Sc'hi'unger's equa-
sion of the non-trace-type weighted densities of states. Dashed lingfn for the circle billiard with radiuRR can be separated in

and squares: results obtained by classical calculations. As in Fig. %)olar coordinatesr(¢), and the wave functions can be ex-
the agreement between the quantum and the classical calculatioggessed in terms of Bessel functions,

seems to be excellent, except for the nearly degenerate recurrences _
ats/2m~1.1. l/’nm(rv‘P):NnmJ\m|(knmr)elm‘P: (30

amplitudes of the weighted densities of states are divided by, the A/
the amplitudes of the unweighted densities of states to o nm
tain, accgrdigg to Eq25), the products of the periodic orbit quantized wave numbers obtained as title zero of Bessel
me_an_sAp(Bp and APBF’.)' 'I_'hese values are p_resented as_functions,J|m‘(knmR)=O. In the following we choose radius
solid lines and crosses in Fig. 3 for the spectra in the chaoUg{:l_ We calculated 31 208 eigenvalues, <500, and the
regime at scaled enerdy=—0.1 and in Fig. 4 for the spec- diagonal matrix elements of the operatarsand r2. The
tra at scaled energf=—0.5 in the near-integrable regime. quantum spectra db) the unweighted density of statpgk)
For comparison, the squares mark the products of the perithe wave numbek is the scaling parametew=k for bil-
odic orbit means obtained from the classical calculations. Asard systemg14]) and the density of states weighted with
in Fig. 2 for the high precision check of the semiclassicalthe matrix element expressionfd) (¢nmlr?¥nm, (©)
trace formula(8), the agreement between the quantum and ¢, Ir|#m?. ~and (d) the variance (varr),n,
classical calculations is found to be very good, which= (.12 ¢nm —{Unmll|#am? have been analyzed with
strongly supports the validity of the semiclassical non-tracethe harmonic inversion method. The amplitudes obtained,
type expressions. Note that the somewhat larger deviatiordivided by the amplitudes of the Berry-Tabor formula, are
between the crosses and squares for the nearly degenerpi@sented as solid lines and crosses in Fig. 5, and the corre-
recurrences ad,/2m~1.1 in Fig. 3 have also been observed sponding classical averages are drawn as squares for com-
in Fig. 2 for the semiclassical trace formulas, i.e., the deviaparison. As can be seen, the agreement is perfect, not only
tion does not indicate any failure of the non-trace-type for-for the identity and the periodic orbit means of the observ-
mula (28). able r? in Figs. 5a) and 5b), verifying the Berry-Tabor
formula and its extensio(®), but also for the squares of the
B. Circle billiard periodic orbit means aof and the variance of this observable
We now investigate the validity of the semiclassical non-" I'.:(Ijg' 5(? ‘Td 4d), where the agree_megt ?emcr)]nstratels the
trace-type formula29) on a second system, viz., the inte- V?_' 'ty 0_ t © n9n-trace-type equat|.o@ ) or the circle
grable circle billiard. This system also serves as a modePilliard with A=B=r. The squares in Fig.(8) mark the
example in Ref.[14] to construct a semiclassical cross- cIaSS|ca_I variances of the observablen .the various reso-
correlated periodic orbit sum for a given set of smooth ob-nant tori. Our conjecture therefore provides a basic formula
servables, and to calculate semiclassical spectra and diagorf@l Semiclassical matrix element fluctuations, since it directly
matrix elements by harmonic inversion of the cross-relates the quantum variances ,yAE<n|A2|n)—<n|A|n>2

being normalization constants) the angular
bﬁwomentum quantum number, and,,,=V2ME,/h the
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L states with the product of the diagonal matrix elements

12+ (@) - - -
1r 7 % (n|A|n)(n|B|n) is equivalent, on the semiclassical level, to
@: g'g i 1 weighting the periodic orbit contributions in the periodic or-
04 b | bit sum with the product of the averages of the correspond-
02t i ing classical observableg¢A),(B),, where the means are
O :(b) 7 taken along the periodic orbits or resonant tori for chaotic
08 b o] and regular systems, respectively. However, a rigorous math-
o 06 L al ematical derivation of semiclassical non-trace-type formulas
v 04 L i appears nontrivial, and would be a challenging task for the
o2 | T T T I further development of semiclassical theories.
0 . o N There are several useful and important applications of
T T T T T ] semiclassical non-trace-type formulas. For example, it en-
. 0.8 | ables the semiclassical approach to matrix element fluctua-
¢ o6 T tions. The variances vaA=(n|A?|n)—(n|A|n)? of the di-
g'g | T agonal matrix elements of a smooth operaare expressed
.o , L Ny in terms of the variances V@AE<A2>p—<A>'2) of the classi-
01 fF b T o cal observabléA taken along the periodic orbits or resonant
0.08 : 1 tori. Non-trace-type formulas also provide the semiclassical
L oo8r o 7 approximation to cross-correlated weighted density of states,
= g'gg ] Paa (E)=2n(n|A In)(n|A, |NYS(E—E,) with a set of
ok T T % esal smooth operatord,, a=1, ... D. The additional classical
Th ar o ar tmans i information obtained from the set of classical observables

7 75 8 85 9 95 10 105 11 115 12 o .
s can be used to significantly improve the convergence prop-

erties of semiclassical quantization meth¢il4].

In this paper we have investigated non-trace-type expres-
sions for products of two diagonal matrix elements. These
_ ) _ ) : A products have been chosen because of the important applica-
circle billiard with radiusR =1 as functions of the actiofin dimen- <+ semiclassical matrix element fluctuations, i.e., the

S'Onlessf S.Caled atomic unitsSolid lines and CroSses. results of the calculation of variances of matrix elements and to the semi-
harmonic inversion of quantum spectra. Dashed lines and squares;_ . o .

S ; . . . Classical quantization method in Rdfl4]. However, our
periodic orbit means obtained by classical calculations.

conjecture is not restricted to products of two matrix ele-
ments. For example, it appears straightforward to generalize
. Egs.(26) and(27) to products of more than two matrix ele-
of a smooth operatoA to the classical variances ya  ments and classical periodic orbit means. The most general
E<A2>p—(A>,2) of the observablé\ taken along the periodic case of non-trace-type equations would be the
orbits or resonant tori. analysis of functionsf(Ay,,Bnn,Chn, --.) Of one or
The perfect agreement between the quantum and classicalore  diagonal ~ matrix  elements, i.e., p?(E)
results for the circle billiard in Fig. 5 compared to the very =2 ,f(Ann,Bnn:Chn, - - - JS(E—E,), which should be ob-
good but not absolutely perfect results for the hydrogen atontained semiclassically by multiplying the periodic orbit am-
in a magnetic field in Figs. 3 and 4 may be explained by theplitudes of Gutzwiller's trace formula or the Berry-Tabor
different number of quantum states used in the harmoniformula with the functionf({(A),,(B),.(C)p,...) of the
inversion analysis. For the circle billiard we have calculatedperiodic orbit means of the corresponding classical observ-
more than 30000 states, which is by about a factor of 1@bles. Certainly the operators and the functfomust be
(5.5 times more quantum states than for the hydrogen atorsmooth. Clearly, further investigations will be necessary to
in a magnetic field at scaled enerfy= —0.1 (E=—0.5). verify that conjecture and to specify the smoothness condi-
tions on operators and functions.
In conclusion, the analysis of non-trace-type equations
IV. CONCLUSION AND OUTLOOK will provide a valuable instrument for extending the relation

We have extended semiclassical trace formulas for th&etween quantum mechanical matrix elements on the one
density of states of regular and chaotic systems, or the derside and the periodic orbit means of classical observables on
sity of states weighted with the diagonal matrix elements ofhe other.
smooth operators, to the more general classafi-trace
type equations, where the density of states is weighted with
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